ASSESSMENT SCHEDULE (Sample)

Mathematics with Calculus: Sketch graphs and find equations of conic sections (90639)

1	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
	Sketch graphs of conic sections.	One	$x^{2} + (y+5)^{2} = 9$ $-4 - 3 - 2 - 1 + 1 + 2 + 3 + 4$ $-4 - 6 + 4 + 4 + 4$ $-6 + 4 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-6 + 4 + 4$ $-8 + 4$ $-8 + 4 + 4$ $-8 +$	A1	Centre and intercepts indicated by sketch. Circle drawn through (0, -2), (0, -8).	ACHIEVEMENT: Two of Code A1 and Two of Code A2
ACHIEVEMENT		Two	$\frac{x^2}{16} + \frac{y^2}{4} = 1$	A1	Centre and intercepts indicated by sketch. Ellipse through (-4,0), (0,2), (4,0), (0,-2).	
		Three	$(y-2)^2 = 4x$ 5 4 3 2 1 -1 1 2 3 4	A1	Vertex and intercepts indicated by sketch. Parabola through (1,0), (0,2)	

	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
		Four (a)	Circle: $(x-4)^2 + (y-2)^2 = 9$	A2	Or equivalent.	ACHIEVEMENT: Two of Code A1
L	information.	(b)	Ellipse: $\frac{(x-3)^2}{9} + \frac{(y-4)^2}{4} = 1$ Hyperbola:	A2	Or equivalent.	and Two of Code A2
ACHIEVEMENT		(c)	Hyperbola: $\frac{x^2}{36} - \frac{y^2}{b^2} = 1$ $\frac{100}{36} - \frac{16}{b^2} = 1$ $\frac{16}{9} = \frac{16}{b^2}$ $b^2 = 9$ $\therefore \text{ Equation of Hyperbola:}$ $\frac{x^2}{36} - \frac{y^2}{9} = 1$	A2	Or equivalent.	

	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
MERIT	Solve problems involving conic sections.	Five	$x = 2\cos 2t \qquad y = 2\sin t$ $\frac{dx}{dt} = -4\sin 2t \qquad \frac{dy}{dt} = 2\cos t$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ $= -\frac{1}{4} \times \frac{1}{\sin t}$ At (1,1) $\sin t = \frac{1}{2}$ $\frac{dy}{dx} = -\frac{1}{2}.$ Equation of tangent: $x + 2y - 3 = 0$ or $y = -\frac{1}{2}x + \frac{3}{2}$ OR $x = 2\cos 2t \qquad y = 2\sin t$ $y^2 = 2 - x$ Differentiating implicitly: $2y \times \frac{dy}{dx} = -1$ $\frac{dy}{dx} = \frac{-1}{2y}$ At (1,1): $\frac{dy}{dx} = -\frac{1}{2}$. Equation: $\frac{y-1}{x-1} = -\frac{1}{2}$		Gradient of tangent evaluated. Equation of tangent	Merit: Achievement plus Two of Code M or All three Code M
			or $x + 2y - 3 = 0$ $y = -\frac{1}{2}x + \frac{3}{2}$	M	written.	

	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
MERIT	Solve conic section problems.	Six	Equation of circle: $x^{2} + y^{2} = 196$ 7 $-14 - 7$ -7 -14 -7 -14		Equation of circle stated. Graph drawn.	MERIT: Achievement plus Two of Code M or All three
		7	Solve for x when $y = -12$ $x^{2} + (-12)^{2} = 196$ $x^{2} = 52$ $x = \sqrt{52}$ Area of base = πr^{2} $= 52\pi \approx 163.4 \text{ cm}^{2}$ Vertex is $(0,2.5)$ so equation of parabola is: $x^{2} = k(y-2.5)$	M	Radius of base calculated and substituted into area formula. Or equivalent. Units not required.	Code M
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	Graph drawn.	
			Equation of parabola: $x^2 = 200 (y - 2.5)$ or $y = 0.005x^2 + 2.5$ y = 3.48 at right hand post: $x^2 = 200 (3.48 - 2.5)$ x = 14 The posts are 44 metres apart.	A2 M	Equation of parabola stated. Distance between the posts is clearly stated.	

	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
EXCELLENCE	Solve more difficult conic section problems.	Eight (a)	Differentiating implicitly gives: $\frac{dy}{dx} = \frac{-b^2x}{a^2y}$ At P($a\cos\theta$, $b\sin\theta$): $\frac{dy}{dx} = \frac{-b\cos\theta}{a\sin\theta}$ Equation of normal: $\frac{y - b\sin\theta}{x - a\cos\theta} = \frac{a\sin\theta}{b\cos\theta}$ $by\cos\theta - b^2\sin\theta\cos\theta = ax\sin\theta - a^2\sin\theta\cos\theta$ $ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$. According to the result from Eight (a): Any normal to $\frac{x^2}{25} + \frac{y^2}{9} = 1 \text{ has the equation } 5x\sin\theta - 3y\cos\theta = 16\sin\theta\cos\theta$. A: x -intercept: $(\frac{16}{5}\cos\theta, 0)$ B: y -intercept: $(0, \frac{-16}{3}\sin\theta)$ Midpoint of AB: $(\frac{8}{5}\cos\theta, \frac{-8}{3}\sin\theta)$ Equation of ellipse formed by the locus of midpoints of AB:	M E	Gradient function is found. Point and normal gradient are substituted. Equation of ellipse stated.	EXCELLENCE: Merit plus Both Code E
			$\frac{25x^2}{64} + \frac{9y^2}{64} = 1 \text{ or } 25x^2 + 9y^2 = 64$			